Equation of a Circle

Objectives:

-Write the equation of a circle.
-Graph a circle on the coordinate plane.

Common Core Standards:
G.GPE. 1 - Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.
G.GPE. 6 - Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
A.CED. 4 - Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

Equation of a Circle

-All points are equidistant from the center (Definition of a Circle)
-You can use the Pythagorean Theorem/Distance Formula to derive the equation of a circle
-The radius is always the same, no matter where the triangle is drawn.

$$
x^{2}+y^{2}=r^{2}
$$

Example: $x^{2}+y^{2}=8^{2}$

$$
x^{2}+y^{2}=64
$$

Center (0,0) and Radius of 8

What if the center of the circle is not at $(0,0) ?$
-Let the center be represented by the point (h, k)

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

Example: $(x-3)^{2}+(y-2)^{2}=6^{2}$

$$
(x-3)^{2}+(y-2)^{2}=36
$$

Center (3, 2) and Radius of 6

Equation of a Circle:

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

Center (h, k)
Radius $=r$

Suggested Explorations for Deeper Understanding:

Exploring the Equation of a Circle Walkthrough (By: Jennifer Wilson)
http://easingthehurysyndrome.wordpress.com/2013/06/18/exploring-the-equation-of-a-circle/

Exploring the Equation of a Circle (By: Texas Instruments)

http://education.ti.com/en/timathnspired/us/detail?id=C52E12D134494960A47F7ACA43BB176B\&t=6BE0FB24FE4348FD912CB3ADC4A038FB

Find the center and radius of each circle.

$$
\begin{aligned}
&(x-3)^{2}+(y-7)^{2}=25 \\
& \text { center }=(3,7) \\
& \text { radius }=5 \\
&(x+5)^{2}+(y-2)^{2}=16 \\
& \text { center }=(-5,2) \\
& \text { radius }=4 \\
&(x-1)^{2}+y^{2}= 21 \\
& \text { center }=(1,0) \\
& \text { radius }=\sqrt{21} \\
& x^{2}+y^{2}=40
\end{aligned}
$$

Write the equation of each circle using the information given.

Center at $(4,2)$ with radius $=7$

$$
(x-4)^{2}+(y-2)^{2}=49
$$

Center at $(-4,-9)$ with radius $=\sqrt{10}$

Equation of a Circle:

$(x-h)^{2}+(y-k)^{2}=r^{2}$
Center (h, k)
Radius $=r$

$$
(x+4)^{2}+(y+9)^{2}=10
$$

Center at $(0,8)$ with radius $=3 \sqrt{3}$

$$
x^{2}+(y-8)^{2}=27
$$

Center at $\left(\frac{1}{2},-2\right)$ with radius $=2 \sqrt{5}$

$$
\left(x-\frac{1}{2}\right)^{2}+(y+2)^{2}=20
$$

Find the center and radius of the circle given by the equation below.
-You will have to complete the square. (From Algebra)

$$
\begin{array}{ll}
x^{2}+y^{2}-8 x+2 y=-8 & \\
x^{2}-8 x+\ldots+y^{2}+2 y+\ldots=-8 & \text { Reorder. } \\
x^{2}-8 x+16+y^{2}+2 y+\ldots=-8+16+1 & \text { Complete the square } . \\
(x-4)^{2}+(y+1)^{2}=9 & \text { Factor. }
\end{array}
$$

Completing the Square:
To find the missing value, take half the middle coefficient and square it.

Example: $x^{2}-8 x+$ \qquad
$-8 \div 2=-4$
$(-4)^{2}=16$

Find the center and radius of the circle given by the equation below.
-You will have to complete the square. (From Algebra)

$$
\begin{array}{ll}
x^{2}+y^{2}+8 x-14 y+40=0 & \\
x^{2}+8 x+\ldots+y^{2}-14 y+\ldots=-40 & \text { Reorder. } \\
x^{2}+8 x+16+y^{2}-14 y+49=-40+16+49 & \text { Complete the square. } \\
(x+4)^{2}+(y-7)^{2}=25 & \text { Factor. }
\end{array}
$$

Finding the Radius

-You may have to find the radius by using the distance formula.

Distance Formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Write the equation of a circle with a center at (5, -1). A point on the circle is (1, 2).
Find Radius: $r=\sqrt{(1-5)^{2}+(2+1)^{2}}$

$$
\begin{aligned}
& r=\sqrt{16+9} \\
& r=\sqrt{25} \\
& r=5
\end{aligned}
$$

Write the equation of a circle with a center at (4, -3). A point on the circle is $(2,1)$.
Find Radius: $r=\sqrt{(2-4)^{2}+(1+3)^{2}}$

$$
\begin{aligned}
& r=\sqrt{4+16} \\
& r=\sqrt{20} \\
& r=2 \sqrt{5}
\end{aligned}
$$

Find the center and radius of the circle, then graph the equation.

$$
(x+2)^{2}+(y-3)^{2}=9
$$

Center at (-2, 3)
Radius $=3$

$$
\begin{aligned}
& (x-5)^{2}+(y+1)^{2}=25 \\
& \text { Center at }(5,-1) \\
& \text { Radius }=5
\end{aligned}
$$

Find the center and radius of the circle, then graph the equation.

$$
\begin{aligned}
& x^{2}+y^{2}+10 x+9=0 \\
& x^{2}+10 x+\underline{+}+y^{2}=-9 \\
& x^{2}+10 x+\underline{25}+y^{2}=-9+25 \\
& (x+5)^{2}+y^{2}=16
\end{aligned}
$$

Center at (-5, 0)
Radius $=4$

Check: Graphing Calculator

-Put equation in $\mathrm{y}=$ form
-Graph both equations

$$
\begin{aligned}
& (x+5)^{2}+y^{2}=16 \\
& y^{2}=16-(x+5)^{2} \\
& y= \pm \sqrt{16-(x+5)^{2}}
\end{aligned}
$$

